NASA/TM-2013-218030

The Chorus Conflict and Loss of
Separation Resolution Algorithms

Ricky W. Butler, George Hagen, Jeffrey M. Maddalon
Langley Research Center, Hampton, Virginia

August 2013

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STT in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

e TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

¢ CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

¢ CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,

or other meetings sponsored or
co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include creating
custom thesauri, building customized
databases, and organizing and publishing
research results.

For more information about the NASA STI
Program, see the following;:

e Access the NASA STI program home page
at hitp://www.sti.nasa.gov

e E-mail your question via the Internet to
help@sti.nasa.gov

e Fax your question to the NASA STI Help
Desk at 443-757-5803

e Phone the NASA STI Help Desk at
443-757-5802

o Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2013-218030

The Chorus Conflict and Loss of
Separation Resolution Algorithms

Ricky W. Butler, George Hagen, Jeffrey M. Maddalon
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

August 2013

Acknowledgments

The authors want to thank Anthony Narkawicz and César Munoz for their help in developing and
tuning these algorithms. Their expertise in the mathematical criteria theory was essential to us
achieving a set of algorithms that conform to this criteria.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802

Abstract

The Chorus software is designed to investigate near-term, tactical conflict and loss
of separation detection and resolution concepts for air traffic management. This
software is currently being used in two different problem domains: en-route self-
separation and sense and avoid for unmanned aircraft systems. This paper describes
the core resolution algorithms that are part of Chorus. The combination of several
features of the Chorus program distinguishes this software from other approaches
to conflict and loss of separation resolution. First, the program stores a history of
state information over time which enables it to handle communication dropouts and
take advantage of previous input data. Second, the underlying conflict algorithms
find resolutions that solve the most urgent conflict, but also seek to prevent sec-
ondary conflicts with the other aircraft. Third, if the program is run on multiple
aircraft, and the two aircraft maneuver at the same time, the result will be implicitly
coordinated. This implicit coordination property is established by ensuring that a
resolution produced by Chorus will comply with a mathematically-defined criteria
whose correctness has been formally verified. Fourth, the program produces both
instantaneous solutions and kinematic solutions, which are based on simple accel-
eration models. Finally, the program provides resolutions for recovery from loss of
separation. Different versions of this software are implemented as Java and C+-+
software programs, respectively.

iii

Contents

1 Introduction 1
2 Assumptions 2
3 Notation 3
4 Common Variables and Functions 4
5 Instantaneous Conflict Algorithms 5
5.1 Most Urgent Aircraft L 6
5.2 Multiple Aircraft Conflict Probe: nDetector 7
5.3 Coordinated Maneuver Criteria: criteria. 8
54 Track Algorithm 8
5.5 Ground Speed Algorithm 9
5.6 Vertical Speed Algorithm 10
6 Kinematic Conflict Algorithms 10
6.1 Future Conflict Detection: nDetectorConfFut 11
6.2 Common Variables 12
6.3 Kinematic Track Algorithm 12
6.4 Kinematic Ground Speed Algorithm 14
6.5 Kinematic Vertical Speed Algorithm 15
7 Loss of Separation Algorithms 17
7.1 Detect Future LoS: nDetectorLoSFut 17
7.2 Determine Divergence: divergentHorizGt 18
7.3 Track LoS Algorithm 18
7.4 Ground Speed LoS Algorithm 20
7.5 Vertical Speed LoS Algorithm 22
8 Summary 24
A Kinematic Trajectory Generation 26
B The CDSS Conflict Probe 29

v

1 Introduction

The Chorus software is designed to investigate near-term, tactical conflict detec-
tion and resolution concepts for air traffic management. This software is used in
two air traffic domains, self-separation concepts [10,11] and unmanned aircraft sys-
tems [3]. This paper describes the core conflict resolution algorithms that are part
of Chorus. The combination of several features of the Chorus program distinguishes
this software from other approaches to conflict resolution [4]. First, the program
stores a history of state information over time which enables it to handle transient
communication dropouts, and produce solutions that are sensitive to past inputs.
Second, the underlying algorithms attempt to resolve both primary and secondary
conflicts with all traffic aircraft. Primary conflicts are those conflicts that exist on
the current trajectory of the aircraft. Secondary conflicts are those conflicts which
arise when an aircraft is maneuvering to resolve a primary conflict. Single resolu-
tions to solve conflicts for multiple aircraft are known in the literature as a “1 to
N7 solutions. Third, if the program is run on multiple aircraft, then the conflict
resolutions between any two aircraft are implicitly coordinated. This implicit coor-
dination property is established by ensuring that resolutions produced by Chorus
will comply with a mathematically-defined criteria whose correctness has been for-
mally verified [1,2,6,8]. Finally, the program was developed using a criteria theory
that has undergone rigorous mathematical verification [1,2,6,8]. That is, the net
effect of both aircraft maneuvering at the same time is beneficial and will avoid a
loss of separation. Fourth, the program produces both instantaneous solutions and
kinematic solutions, which are based on simple acceleration models. Finally, the
program provides resolutions for recovery from loss of separation (LoS) in addition
to conflicts.

Chorus provides several different resolution algorithms that are useful for differ-
ent applications. All of the Chorus algorithms use iterative search to find resolu-
tions. The algorithms search over a range of potential solutions and methodically
step through them to determine if they meet the desired properties. This is a change
from our earlier work where we relied exclusively on analytical solutions [5]. A key
advantage of the analytical solutions is that they are known to satisfy the desired
properties based on an a-priori mathematical analysis and are often computation-
ally more efficient. The advantage of the iterative approach used in Chorus is that
the desired properties of the resolution can be much more complicated, but this
comes at the cost of higher execution times. Although all of the Chorus resolution
algorithms are iterative, in certain cases where an iterative solution is not found, an
analytical solution from the ACCoRD CRSS! resolver is returned. The CRSS conflict
resolution algorithm has been formally verified using the PVS theorem prover [9].

Resolution algorithms also differ in their design assumptions about how the air-
craft will change from its current state (position and velocity) to the future resolution
state. Chorus provides algorithms based on two different approaches: instantaneous
and kinematic change. An instantaneous maneuver assumes the aircraft can in-
stantly change from its current state to the target state. A kinematic solution

!See [5] and other references at http://shemesh.larc.nasa.gov/fm/fm-atm-cdr.html

provides a simple model that uses a specified constant acceleration to achieve the
target resolution state.

Another important aspect of a conflict resolution algorithm is the goal of the
algorithm, in particular, the safety property that the resolution algorithm is seeking
to maintain. Chorus provides algorithms for two different goals: conflict avoidance
and loss of separation recovery. Conflict avoidance is a safety goal that ensures that
the aircraft will not be closer than given horizontal and vertical minimum distances,
typically 5 nautical miles horizontally and 1000 feet vertically. The goal of a loss of
separation algorithm is to find a resolution that quickly separates the aircraft and
prevents a collision. The Chorus loss of separation algorithms produce resolutions
that increase the distance at the closest point of approach and avoid nearly parallel
final states. Note that this is a weaker property than conflict avoidance, but it can
be applied when separation has already been lost.

Sections in this paper describing the resolution algorithms are summarized in
table 1.

‘ instantaneous ‘ kinematic

Section 6
Section 7

Section 5
Section 7

conflict
loss of separation (LoS)

Table 1. Resolution Algorithms in Chorus

The Chorus software has been released as open-source software and is available
upon request. See http://shemesh.larc.nasa.gov/fm/fm-atm-codes.html for
help in obtaining this software.

2 Assumptions

For the Chorus software to operate correctly, certain contextual assumptions must
be satisfied. The most significant assumption is one of consistent shared knowledge.
This is important for both conflict detection and for consistent criteria calculations.
Specifically it is assumed that state information is accurate, within an error bound,
and that any two aircraft in a conflict situation are using the same values. This
can be achieved by having each aircraft send its state data according to a schedule
based on a global clock. This ensures all aircraft use the same set of broadcasts
as a basis for their calculations. In addition, the state data used for an aircraft’s
internal calculations must be the same as the values that it broadcasts to other
aircraft. This data is likely to be a discretized version of the native sensor data.
For example, values could be read and timestamped on each second and broadcast
before the next second. Calculations would then be based on data with timestamps
that are at least a full second earlier than the current time. The time latency in
the data can be compensated using standard linear projection. Fortunately, the
mathematical criteria that serves as a basis of these algorithms calculates direction
parameters that are insensitive to linear time projection.

Additionally, there is an assumption of a localized global awareness of traffic.
That is, if aircraft A is considered to be the most urgent traffic by aircraft B, it is
essential that A consider B to be its most urgent aircraft in order for there to be
a guarantee of implicit coordination. There are subtle, multiple aircraft encounters
where this property may not hold. For example, suppose that aircraft A is in conflict
with aircraft B, but it is not in conflict with aircraft C. Further, suppose that aircraft
B is in conflict with both C and A, but it loses separation with C before it loses
separation with A. In this case, A views B as most urgent, while B views C as most
urgent. Thus, aircraft A and aircraft B hold incompatible views about their most
urgent aircraft. One subject of future work is to develop approaches to achieving
compatible results for the most urgent aircraft even in complex scenarios such as
these. It is important that this work take into consideration broadcast distances,
which makes this problem even more difficult.

The positions and velocities used in these algorithms are specified as 3-dimensional
inertial Euclidean coordinates. Measurements in other coordinate frames, such as
air-relative or geodetic frames, need to be projected into an Euclidean space as
appropriate. The Chorus software automatically performs these projections if the
input data is geodetic although we do not present the details of those projections
in this paper. The East-North-Down projections used in Chorus are believed to be
valid given the short distances and short time horizon of the Chorus algorithms.

3 Notation

The Chorus algorithms are captured in two versions written in an object-oriented
style in both the Java and C++ programming languages, respectively. The Chorus
algorithms are documented in this paper in a pseudocode that is neither Java nor
C++. Instead, this pseudocode is a hybrid language incorporating features of both
functional languages and object-oriented languages. The purpose of the pseudocode
is to capture the major logic of the algorithms without the distracting details of a
normal programming language.

Common operations on sets or lists are assumed, so a list size function exists, and
elements can be accessed by index, as indicated by array subscript notation 1ist [x].
Similarly, standard mathematical vectors are available, Vect2 for a 2-dimensional
vector and Vect3 for a 3-dimensional vector. In addition, standard arithmetic on
vectors is assumed, so for vectors u, v, and w and double a, v = u+w*a represents
the assignments:

V.X = U.X + W.X * a
V.y = u.y + w.y * a
V.Z = u.z + W.Z * a

The pseudocode assumes the existence of an n-ary tuple data type, denoted by
(x1,..,xn), which allow piecewise assignment,

(x1,...,xn) = (y1,...,yn)

thus assigning x1 the value y1, etc. In the Java and C++ source code, these opera-
tions are often implemented as separate instance variables using appropriate accessor
functions, and sometimes may be set as side effects as opposed to being returned
explicitly in a function.

Additionally, in order to simplify the presentation, pass-through parameters to
longer function calls may be omitted. For example,

criteria(s,vo,vi,vo’,minRelVs)
will generally be represented as
criteria(...,vo’,...)

Certain data that is expressed here as parameters may be implicitly passed as in-
stance variables in the Java and C++ source code implementation.

The definitions of the operators (+, -, *, /, ==, 1=, etc.) are the definitions from
Java or C++, without relying on exotic behavior such as overflow. We use AND and
OR for the boolean connectives rather than && and || used in Java and C++. The
operator ~= is defined to mean “almost equals,” which means that the values are
compared and if they are within a fixed floating point precision of each other, then
they are considered to be equal.

The loop statement syntax is taken from Java and C++ and, like these languages,

it has the semantics of a for loop.
for (initialization; test; increment) { ... }

Our notation for function definitions departs from Java/C++ syntax in that the
return type of the function follows the parameters. For example, a function that
computes the sine function would be declared as follows:

sine(x): double { ... }

Note that the types of the function parameters are not listed. We also allow an
N-tuple return type:

func(x,y,z): (a,b) { ...}

Here the function func has three parameters and returns two values with types: a
and b.

4 Common Variables and Functions

The following variables are commonly used in the Chorus algorithms:

so initial ownship position (se)

vo initial ownship velocity (vo)

si initial traffic position (s;)

vi initial traffic velocity (v;)

s initial relative position (s)
initial relative velocity (v)

The algorithms use a vector library which provides the ability to algebraically
manipulate vectors. The following are common functions:

vV.X
v.y

V.Z
vo.trk()
vo.gs()

vo.vs()

x component of vector v

y component of vector v

z component of vector v

returns track component of velocity v,

returns ground speed component (2-D vector magni-
tude) of velocity vo

returns vertical speed component of velocity v,

vo.mkTrk(trk) creates a 3-dimensional velocity vector from v, where

vo.mkGs (gs)

vo.mkVs (vs)

the track component is changed to trk

creates a 3-dimensional velocity vector from v, where
the ground speed component is changed to gs
creates a 3-dimensional velocity vector from v, where
the vertical speed component is changed to vs

Additionally, the following function is used to define loss of separation between two

aircraft:

LoS(s,D,H)

returns TRUE if the relative position s is in loss of sep-
aration with respect to a protection zone with hori-
zontal separation D and vertical separation H.
This is defined as:

S.x*s.x + s.y*s.y < D*D AND |s.z| < H

The following are parameters that are assumed to be globally accessible and
therefore these variables are not explicitly passed in the pseudocode:

D

H

Tres
aircraftlist

minGs
maxGs
minVs
maxVs

minimum horizontal separation

minimum vertical separation

lookahead time for resolution

list of all traffic aircraft. The ownship aircraft is not
included in this list. The information for each air-
craft in this list can be used to return its position
and velocity (possibly extrapolated) at a given time.
minimum ground speed allowed for ownship
maximum ground speed allowed for ownship
minimum vertical speed allowed for ownship
maximum vertical speed allowed for ownship

checkSecondary a boolean flag, where TRUE indicates aircraft other

than the most urgent are considered

5 Instantaneous Conflict Algorithms

Chorus’ instantaneous conflict resolution algorithm attempts to find a resolution
that is free of conflicts with all traffic aircraft. However, if a resolution cannot be

found that satisfies this property, then a resolution that is free of conflicts with
only the most urgent aircraft is returned. How Chorus determines the aircraft that
is most urgent is described in section 5.1. The algorithm proceeds in two steps.
The first step finds a starting point for iteration (track angle, ground speed, and
vertical speed) using the analytical solutions from the CRSS algorithm. The CRSS
class implements the ACCoRD algorithms that have been formally verified?. The
first step of the instantaneous conflict algorithm is as follows:

resolution_i = CRSS.resolution(s,vo,vi,epsh,epsv)
double trkO = 0

double gsO = 0

double vsO = 0

if (CRSS.hasTrkOnly()) trkO = CRSS.trkOnly()

if (CRSS.hasGsOnly()) gsO = CRSS.gsOnly()

if (CRSS.hasVsOnly()) vsO = CRSS.vsOnly()

The variable resolution_i is a status flag and it is used to indicate the nature of
the resolution, for instance, “no conflict” or “loss of separation.”

The second step of the algorithm seeks to avoid secondary conflicts by iteratively
searching starting from the computed values trk0, gs0, and vs0. In all of the algo-
rithms, the search direction (dir) is determined by the mathematical criteria. Before
we discuss the instantaneous iterative resolution algorithms, we introduce three key
functions: mostUrgent, nDetector and criteria in the next three sections.

5.1 Most Urgent Aircraft

An aircraft may have multiple conflicts with other aircraft on its current trajectory
or be in loss of separation with more than one aircraft. In the conflict case, Chorus
determines which aircraft has the most urgent conflict, that is, the conflict with
the minimum time into loss of separation. The solution to this conflict serves as a
starting point for solving any remaining primary or secondary conflicts. In the loss of
separation case, the determination of most urgent is more subtle. The function that
determines the most urgent conflict uses the following ranking (highest to lowest):

1. Aircraft that are in loss of separation with the ownship that have convergent
velocities, with the smallest cylindrical distance at time of closest approach [7]
ranked first.

2. Aircraft that are in loss of separation with the ownship having divergent ve-
locities are ranked by the current horizontal distance.

3. Aircraft that are in conflict with the ownship, with those that are closest (in
time) to a loss of separation ranked higher.

4. All other aircraft are ranked by current horizontal distance.

2See http://shemesh.larc.nasa.gov/fm/fm-atm-cdr.html

Resolving conflicts with multiple aircraft is quite challenging. There are cases where
the traffic density is so high that the ownship cannot find a suitable maneuver. Al-
though resolution of all conflicts is desirable, it is not always possible and a com-
promise must be made. In these cases, Chorus provides a resolution that solves the
most urgent conflict and a flag is set to indicate unresolved conflicts. Furthermore,
implicit coordination is only guaranteed with respect to the most urgent aircraft.

5.2 Multiple Aircraft Conflict Probe: nDetector

The nDetector function performs a conflict probe between the position and velocity
of one aircraft (usually the ownship) and all other traffic aircraft. The iterative
resolution algorithms described in this paper use the nDetector function to check
potential resolutions, not just the current state of the ownship. Thus, the data sent
to the nDetector function are possible ownship resolutions, not the actual ownship
state data. This function requires the following parameters:

so position of the ownship

vo velocity vector of the ownship

t0wn time when so and vo were collected
mu index of the most urgent aircraft

ignore index of aircraft that should be ignored. Use —1 to
accept all aircraft

The function is defined as follows:

nDetector(so,vo,tOwn,mu,ignore) : boolean {
for (j = 0; j < aircraftList.size(); j++) {

T = Tres

if (j == muw) T = MAXDOUBLE

if (j != ignore) {
(si,vi) = predLinear(aircraftList[j],t0Own)
Vect3 s = so - si
if (CDSS.conflict(s,vo,vi,D,H,T)) return TRUE

}
return FALSE

}

The function predLinear (ac, tOwn) estimates the position and velocity vectors for
the traffic aircraft ac at time tOwn, using a linear extrapolation from the aircraft’s
last position and velocity. The CDSS.conflict function performs the conflict de-
tection and it is defined in Appendix B. If there is a conflict with any aircraft the
nDetector function returns TRUE, otherwise it returns FALSE. The time parameter,
T, indicates how far in the future conflicts should be checked. Setting T to MAXDOUBLE
ensures resolutions will be sufficient to fully resolve the immediate conflict and any
secondary conflicts with the most urgent aircraft.

The ignore value represents an aircraft to be ignored by the conflict detection.
It is set to —1 (an invalid index) for primary detection (i.e. include all aircraft) and
the index of the most urgent traffic for secondary conflict detection.

5.3 Coordinated Maneuver Criteria: criteria

Two resolution algorithms are said to be coordinated if they produce resolutions
that solve the conflict when either one aircraft maneuvers or both aircraft manuever
simultaneously. Coordination criteria is a boolean function that takes as inputs the
state information for two aircraft. Criteria serves as a mathematical requirement
for resolution algorithms such that if any two algorithms satisfy the criteria, then
resolutions from those algorithms are coordinated. An elaborate mathematical the-
ory of coordination criteria is presented in [2,6,8]. This theory provides important
system-wide safety properties, which have been mathematically proven and proofs
are contained in the references.

In the Chorus resolution algorithms, criteria are used to set the search direction.
Since the initial resolution (from the CRSS algorithm) is already coordinated, setting
the iterative search direction in the coordinated direction ensures that an iterated
solution is also coordinated.

The function criteria requires the following parameters:

S position of the ownship relative to the traffic aircraft
Vo velocity of the ownship aircraft

vi velocity of the traffic aircraft

vo’ velocity vector of the ownship to be checked against

the criteria
minRelVs desired minimum relative exit vertical speed (used in
LoS only)

5.4 Track Algorithm

The track algorithm depends upon both the nDetector conflict detector and the
criteria function. The algorithm uses iteration on the variable trkDelta in the
direction dir = +1 and with an increment size step. At each iteration step a
new track is computed: trkO+dir*trkDelta where trkO is the solution obtained
from CRSS. The iteration is continued until the nDetector function indicates there
is no conflict with any traffic aircraft and criteria indicates that the new vector
meets the implicit coordination criteria, or until 180° have been searched. If a
track solution cannot be found that solves the conflict with the most urgent aircraft
(primary conflict) and also avoids secondary conflicts, then the resolution that only
resolves the conflict with the most urgent aircraft, which is supplied by the CRSS
function, is returned.

inst_track(so,vo,t0wn,mu,trk0,dir,step) : (boolean,double) {
hasTrk = FALSE
for (trkDelta = 0; trkDelta < PI; trkDelta = trkDelta + step) {

trk trkO + dir * trkDelta

vo’ = vo.mkTrk(trk)

if (NOT nDetector(so,vo’,tOwn,mu,-1) AND criteria(..., vo’,...))
(hasTrk,trkOnly) = (TRUE,trk)
break

3

}
if (NOT hasTrk) {
(hasTrk,trkOnly) = (CRSS.hasTrkOnly(),CRSS.trkOnly())
}
return (hasTrk,trkOnly)
}

5.5 Ground Speed Algorithm

The ground speed algorithm depends upon the nDetector conflict detector and the
criteria function. The algorithm uses iteration on the variable gsDelta in the
direction dir = +1 and with an increment size step. At each iteration step a
new ground speed is computed: gsO+dir*gsDelta, where gsO is the ground speed
solution obtained from CRSS. The iteration is continued until the nDetector function
indicates there is no conflict with any traffic aircraft and criteria indicates that
the new vector meets the implicit coordination criteria, or until the ground speed
exceeds the preset minGs, maxGs bounds. If no ground speed solution can be found
that resolves the conflict with the most urgent aircraft (primary conflict) and that
also avoids secondary conflicts, then a resolution that only resolves the conflict
with the most urgent aircraft is returned. This resolution is computed by the CRSS
function,

inst_gs(so,vo,t0wn,mu,gs0,dir,step) : (boolean,double) {
for (gsDelta = 0; ; gsDelta = gsDelta + step) {

nvGs = gsO + dir * gsDelta

if (nvGs < minGs OR nvGs > maxGs) break

vo’ = vo.mkGs(nvGs)

if (NOT nDetector(so,vo’,tOwn,mu,-1) AND criteria(..., vo’,..
(hasGs,gsOnly) = (TRUE,nvGs)
break

}
if (NOT hasGs) {
(hasGs,gsOnly) = (CRSS.hasGsOnly(),CRSS.gsOnly())
}
return (hasGs,gsOnly)
}

{

D) A

5.6 Vertical Speed Algorithm

The vertical speed algorithm depends upon the nDetector conflict detector and
the criteria function. The algorithm uses iteration on the variable vsDelta in
the direction dir = +1 and with an increment size step. At each iteration step a
new track is computed: vsO+dir*vsDelta where vsO is the vertical speed solution
obtained from CRSS. The iteration continues until the nDetector function indicates
there is no conflict with any traffic aircraft and criteria indicates that the new
vector meets the implicit coordination criteria, or until the vertical speed exceeds
the preset minVs, maxVs bounds. If no vertical speed solution can be found that
solves the primary conflict (with the most urgent aircraft) and also avoids secondary
conflicts, then the resolution that only resolves the conflict with the most urgent

aircraft (which is computed by the CRSS function) is returned.

inst_vs(so,vo,t0wn,mu,vs0,dir,step) : (boolean,double) {

for (vsDelta = 0; ; vsDelta = vsDelta + step) {
nVs = vs0 + dir * vsDelta
if ((nVs > maxVs) OR (nVs < minVs)) break
vo’ = vo.mkVs(nVs)

if (NOT nDetector(so,vo’,tOwn,mu,-1) AND criteria(..

(hasVs,vsOnly) = (TRUE,nVs)
break
}
}
if (NOT hasVs) {

(hasVs,vsOnly) = (CRSS.hasVsOnly(),CRSS.vsOnly())

3

return (hasVs,vsOnly)

by

6 Kinematic Conflict Algorithms

., vVo’,..

D) A

The kinematic algorithms are more complex than the instantaneous algorithms, but
provide better solutions because they take into consideration the fact that aircraft
must maneuver over time to achieve the resolutions. Since the aircraft converge over
time, the kinematic algorithms produce larger resolutions than the instantaneous
algorithms. The difference between these resolutions will grow depending on how
close the two aircraft are to each other, as shown in figure 1. In this figure, the
original velocity is shown in red, the instantaneous solution is the straight resolution

vector and the kinematic solution is the curved resolution vector.

The kinematic

solvers use models of aircraft dynamics with an assumed constant acceleration to
project the positions of the ownship and traffic as the iteration as time progresses.
The kinematic models used by these algorithms are defined in Appendix A. The

determination of the most urgent conflict is described in section 5.1.

10

Figure 1. Kinematic and Instantaneous Trajectories for Conflict Resolution

6.1 Future Conflict Detection: nDetectorConfFut

The function nDetectorConfFut uses a kinematic projection of the future position
of the aircraft and performs a conflict probe at the future point.

This function performs conflict detection with respect to all aircraft on a future
state of the ownship. The ownship future state is passed as a parameter. The traffic
states are projected linearly using a relative time (delTm). It uses a list of traffic
state data called aircraftlList. A function predLinear is used to interpolate the
traffic data linearly to match the times of the ownship. It is expected that most
of the time the interpolation will be unnecessary because the time stamps should
match (except during communications dropouts).

The function nDetectorConfFut returns a status per table 2 and has the fol-
lowing parameters:

soFut the future position of the ownship

v’ the velocity vector to be checked for conflicts

delTm the amount of time that the ownship is projected into
the future (i.e., the time after tOwn when soFut is

valid)

mu the most urgent aircraft index

tOwn timestamp for the current position and velocity (i.e.,
So and v,)

Pseudocode for the function is:

nDetectorConfFut (soFut,v’,t0wn,delTm,mu) : int {
int rtn = -1
for (i = 0; i < aircraftList.size(); i++) {
(si,vi) = predLinear(aircraftList[i],t0wn)
Vect3 s soFut - si
if (LoS(s,D,H)) {
if (i == mu) return 3 // LoS with primary

11

-1 no conflict

secondary conflicts, no LoS, but is conflict free with most urgent aircraft

primary conflict

LoS with an aircraft that is not the most urgent one
LoS with most urgent aircraft

W= Oo

Table 2. Values returned from nDetectorConfFut

else rtn = 2
}
Tresolve = Tres
if (i == mu) Tresolve = MAX_VALUE
boolean conf = CDSS.conflict(s,v’,vi,D,H,Tres)
if (conf AND rtn < 0) rtn = O
if (i == mu AND conf AND rtn < 1) rtn = 1
}

return rtn

6.2 Common Variables

In addition to D, H, Tres, and aircraftList described in section 4, the following
variables are assumed to exist in the kinematic calculations:

maxBank maximum bank angle allowed for ownship

gsAccel ground speed acceleration allowed for ownship

vsAccel vertical speed acceleration allowed for ownship

minRelGs desired minimum relative speed for horizontal exit
(used in LoS only)

minRelVs desired minimum relative speed for vertical exit (used
in LoS only)

6.3 Kinematic Track Algorithm

The kinematic track algorithm iteratively searches for a solution that satisfies the
criteria and is also free of secondary conflicts. It has the following parameters:

so position of the ownship

vo velocity of the ownship

t0wn timestamp for the so,vo data

mu index of the most urgent aircraft

step the iteration step size
Pseudocode for the function is:

kinematicTrack(so,vo,tOwn,mu,step) : (boolean,double) {
omega = turnRate(vo.gs(),dir*maxBankAngle)

12

nDetKin = 0
crit = TRUE
nvTrk = 0
Vect3 firstFound = ZERO
hasTrk = FALSE
for (trkDelta = 0; trkDelta < PI; trkDelta = trkDelta + step) {
tm = dir * trkDelta / omega
nvTrk = vo.trk() + dir * trkDelta
(soAtTm,vo’) = turnOmega(so,vo,tm,omega)
nDetKin = nDetectorConfFut (soAtTm,vo’,t0wn,tm,mu)
crit = criteria(..., vo’,...)
if (nDetKin == 0 AND crit AND firstFound == ZERO) firstFound = vo’
if (nDetKin >= 2) break // check for LoS
if (mDetKin < 0 AND crit) {
(hasTrk,trkOnly) = (TRUE,nvTrk)
break
}
}
if (NOT hasTrk AND nDetKin < 2 AND firstFound != ZERO) {
(hasTrk,trkOnly) = (TRUE,firstFound.trk())
}
if (NOT hasTrk AND nDetKin >= 2) {
if (infeasibleUseFutureLos) {
if (nDetKin == 3) { // entered LoS while iterating
(hasTrk,trkOnly) = projectAndUseKinTrkLoS (tm,mu,step)
} else {
(hasTrk,trkOnly) = (TRUE,nvTrk)
}
} else {
if (nDetKin == 3) {
(hasTrk,trkOnly) = (CRSS.hasTrkOnly(),CRSS.trkOnly())
}
}
}
return (hasTrk,trkOnly)
}

A variable firstFound holds the first vector that is conflict-free with respect to
the most urgent conflict. If a solution free of secondary conflicts is not found,
the algorithm reverts to this solution. If the returned hasTrk value is FALSE, the
returned trkOnly value is undefined.

This algorithm contains a configuration flag, infeasibleUseFutureLos, which
describes what should be done with the iteratively discovered solution that still
has at least one loss of separation. If infeasibleUseFutureLos is FALSE then the
solution from CRSS is returned. If infeasibleUseFutureLos is TRUE, then one of
two possible solutions is returned. If the only solutions found continue to have

13

conflicts, then the algorithm projects the aircraft states into the future to exactly
one half second after entry into LoS and computes a LoS resolution, using the
function projectAndUseKinTrkLoS that is described below. Otherwise it returns a
solution that is free of conflicts with the most urgent aircraft, but still has losses of
separation with other aircraft.

The projection into the future is accomplished by the function projectAndUse-
KinTrkLoS which is defined as follows:

projectAndUseKinTrkLoS(timeIntoLoS,mu,step) : (boolean,double) {
i = aircraftlist.get(mu) .position(timeIntoLoS + 0.5)

vi = aircraftlList.get(mu).velocity(timeIntoLoS + 0.5)

soFut = so.linear(vo,timeIntoLoS + 0.5)

sFut = soFut - si

if (sFut*(vo-vi) > O OR sFut.vect2().norm() < D/2.0) {

S1

(hasTrk,trkOnly) = (TRUE,vo.trk()+dir*pi/4.0)
} else {
(hasTrk, trkOnly) = trackLoS(soFut,si,vo,vi,mu,TRUE,step)

}
}

The variable timeIntoLos is the computed relative time into LoS from the current
position. The first if-branch is used for cases where the loss of separation entry point
is the top or bottom of the protection zone, that is, there is already a horizontal
loss of separation. The function trackLoS is defined in section 7.3.

6.4 Kinematic Ground Speed Algorithm

The kinematic ground speed algorithm iteratively searches for a solution that satis-
fies the criteria and is also free of secondary conflicts. It has the following parameters:

so position of the ownship

vo velocity of the ownship

tOwn timestamp for the so,vo data

mu index of the most urgent aircraft

step step size for search

kinematicGroundSpeed(so,vo,t0Own,mu,step) : (boolean,double) {

int nDetKin = 0

Vect3 firstFound = ZERO

hasGs = FALSE

for (gsDelta = 0; TRUE; gsDelta = gsDelta + step) {
double tm = gsDelta / gsAccel
double nvoGs = vo.gs() + gsDir * gsDelta
if ((nvoGs > maxGs) OR (nvoGs < 0)) break
(soAtTm,vo’) = gsAccel(so,vo,tm,gsDir * gsAccel)
nDetKin = nDetectorConfFut (soAtTm,vo’,t0wn,tm,mu)
boolean crit = criteria(s,vo,vi,vo’,...)

14

if (nDetKin == 0 AND crit AND firstFound == ZERO) firstFound = vo’
if (nDetKin >= 2) break // check for LoS
if (mDetKin < 0 AND crit) {
(hasGs,gsOnly) = (TRUE,vo’)
break
}
}
if (NOT hasGs AND nDetKin < 2 AND firstFound != ZERO) {
(hasGs,gs0Only) = (TRUE,firstFound.gs())
}
if (nDetKin >= 2) { // some LoS or still in conflict
if (infeasibleUseFutureLos) {
si = aircraftlList.get(mu).position(timeIntoLoS + 0.5)
vi = aircraftlist.get(mu).velocity(timeIntoLoS + 0.5)
soFut = so.linear(vo,timeIntoLoS + 0.5)
siFut = si.linear(vi,timeIntoLoS + 0.5)
(hasGs,gsOnly) = gsLoS(soFut,vo,siFut,vi,TRUE,step)
} else {
(hasGs,gs0Only) = (CRSS.hasGsOnly(),CRSS.gsOnly())
}
}
return (hasGs,gsOnly)
}

The variable timeIntoLos is the computed relative time into LoS from the current
position. Just as in section 6.3, the infeasibleUseFutureLos flag is a configuration
parameter that chooses between two different algorithms when the iterative solver
cannot find a solution free of LoS for all aircraft. If the infeasibleUseFutureLos
flag is FALSE then it reverts back to the CRSS solution. If the infeasibleUseFuture-
Los flag is TRUE, then the algorithm projects the aircraft states into the future to
exactly one half second after entry into LoS and computes a LoS resolution. The
function gsLoS is defined in section 7.4.

6.5 Kinematic Vertical Speed Algorithm

The kinematic vertical speed algorithm iteratively searches for a solution that satis-
fies the criteria and is also free of secondary conflicts. It has the following parameters

so position of the ownship

Vo velocity of the ownship

tOwn timestamp for the so,vo data

mu index of the most urgent aircraft

step step size for search

kinematicVerticalSpeed(so,vo,t0wn,mu) : (boolean,double) {
int nDetKin = 0

15

Vect3 firstFound = ZERO
hasVs = FALSE
for (vsDelta = 0; TRUE; vsDelta = vsDelta + step) {
nVs = vo.vs() + dir * vsDelta
if ((nVs > maxVs) OR (nVs < minVs)) break
tm = |nVs - vo.vs()| / vsAccel
(soAtTm,vo’) = vsAccel(so,vo,tm,vsDir*vsAccel)
nDetKin = nDetectorConfFut(soAtTm,vo’,t0wn,tm,mu)
boolean crit = criteria(s,vo,vi,vo’,...)
if (nDetKin == 0 AND crit AND firstFound == ZERO) firstFound = vo’
if (nDetKin >= 2) break
if (nDetKin < 0 AND crit) {
(hasVs,vsOnly) = (TRUE,nVs)
break
}
}
if (NOT hasVs AND nDetKin < 2 AND firstFound != ZERQO) {
(hasVs,vsOnly) = (TRUE,firstFound.vs())
}
if (nDetKin >= 1) { // LoS with primary or secondary or still conflict
if (infeasibleUseFutureLos) {
si = aircraftlList.get(mu).position(timeIntoLoS + 0.5)
vi = aircraftlist.get(mu).velocity(timeIntoLoS + 0.5)
soFut = so.linear(vo,timeIntoLoS + 0.5)
siFut = si.linear(vi,timeIntoLoS + 0.5)
(hasVs,vsOnly) = vsLoS(soFut,vo,si,vi,TRUE,step,epsv)
} else {
(hasVs,vsOnly) = (CRSS.hasVsOnly(),CRSS.vsOnly())
}
}
return (hasVs,vsOnly)

¥

The variable timeIntoLos is the computed relative time into LoS from the current
position. Just as in section 6.3, the infeasibleUseFutureLos flag is a configuration
parameter that chooses between two different algorithms when the iterative solver
cannot find a solution free of LoS for all aircraft. If the infeasibleUseFuture-
Los flag is TRUE, the algorithm projects the aircraft states into the future to ex-
actly one half second after entry into LoS and computes a LoS resolution. If the
infeasibleUseFutureLos flag is FALSE, then it uses the CRSS solution. The func-
tion vsLoS is defined in section 7.5.

16

-1 no conflict

primary conflict

LoS with at least one aircraft that is not the most urgent aircraft
LoS with most urgent aircraft

WIN| —

Table 3. Values returned from nDetectorLoSFut

7 Loss of Separation Algorithms

The criteria [8] provides a notion of correctness for loss of separation (LoS) algo-
rithms that is based on the concept of repulsion. A solution is repulsive if the
distance at the time of closest approach between the two aircraft is greater than the
current distance. This is a fairly weak property, but the algorithms obtain good re-
sults by seeking maximally repulsive solutions. That is, the iterations continue until
the maximum vector that is repulsive is found. In the loss of separation case, the key
factor is that the resolutions are implicitly coordinated. Therefore, the direction of
the maneuver is far more important than the magnitude of the maneuvers. The LoS
algorithms also seek to achieve a minimum relative exiting speed to avoid solutions
that place the aircraft in nearly parallel trajectories at the end of the maneuvers.

Each of the resolution algorithms presented below can produce either a instan-
taneous solution or a kinematic solution, controlled by the parameter kinematic.
Recall that an instantaneous solution is one where the aircraft is assumed to imme-
diately achieve the maneuver whereas a kinematic solution is one where the aircraft
must accelerate from its current position to achieve the resolution.

7.1 Detect Future LoS: nDetectorLoSFut

This function nDetectorLoSFut performs detection with respect to all aircraft (ex-
cept a designated most urgent aircraft, which is ignored) on a future state. The
ownship future state is passed as a parameter. The traffic states are projected lin-
early using a relative time (delTm). The return values are listed in table 3. The
parameters are:

soFut future position of the ownship

nv velocity vector to be checked for conflicts

t0wn timestamp for so, vo data

delTm the amount of time that the ownship is projected into
the future (i.e., the time after tOwn when soFut is
valid)

mu index of the most urgent aircraft

The nDetectorLoSFut function is used in the LoS case and hence it does not
check for conflicts with the LoS aircraft (i.e. mu).

nDetectorLoSFut (soFut,nv,t0wn,delTm,mu) : int {
int rtn = -1

17

for (j = 0; j < aircraftList.size(); j++) {
if (5 '=mu) {
(si,vi) = predLinear(aircraftList[j],t0wn)
si = si.linear(vi,delTm)
Vect3 s = soFut - si
if (LoS(s,D,H)) {

rtn = 2
break
}
boolean conf = CDSS.conflict(s,nv,vi,D,H,Tres)
if (conf AND rtn == -1) rtn = 1
}
}
return rtn
}

The function predLinear (tOwn) retrieves the position and velocity vectors for the
traffic aircraft for time tOwn. The CDSS. conflict function performs the conflict de-
tection (See appendix B). If there is a conflict with any aircraft the nDetectorLoSFut
function returns TRUE, otherwise it returns FALSE.

7.2 Determine Divergence: divergentHorizGt

A pair are aircraft are said to be divergent if the separation at all future positions is
greater than their current separation. The function divergentHorizGt determines
if the current state between the two aircraft is divergent and the relative speed is
greater than a specified minimum relative speed:

divergentHorizGt(s,vo,vi) : boolean {
Vect2 v = vo - vi
return s.dot(v) > O AND v.norm() > minRelGs

}

7.3 Track LoS Algorithm

The following pseudocode describes the iterative LoS track algorithm. It can pro-
duce an instantaneous resolution or a kinematic one. The following parameters are

used:
so ownship’s position
Vo ownship’s velocity
si traffic aircraft’s position
vi traffic aircraft’s velocity
mu index of the aircraft to be resolved against, usually

the most urgent aircraft

kinematic flag which determines whether a kinematic or an in-
stantaneous solution is desired

step step size for search

18

The trackLos function is defined as follows:

trackLoS(so,si,vo,vi,mu,kinematic,step) : (boolean,double) {
vo’ = ZERO
omega = turnRate(vo.gs() ,maxBank)
boolean criteriaEverSatisfied = FALSE
for (trkDelta = step; trkDelta < PI/2; trkDelta = trkDelta + step) {
nvoTrk = vo.trk() + trkDir * trkDelta
tm = 0.0
Vect3 soAtTm so
Vect3 siAtTm = si
if (kinematic) {
tm = trkDelta / omega
soAtTm = turnOmega(so,vo,tm,trkDir * omega).first
siAtTm = si.linear(vi,tm)

}

SsAtTm = soAtTm - siAtTm

prevVo’ = vo’

vo’ = vo.mkTrk(nvoTrk)

boolean divg = divergentHorizGt(sAtTm,vo’,vi)
criteria = criteria(sAtTm,prevNvo,vi,vo’,...)

if (criteria) criteriaEverSatisfied = TRUE
if (checkSecondary) {
nDetKin = nDetectorLoSFut (soAtTm,vo’,t0wn,tm,mu)
}
divgOrNotCrit = (divg OR NOT criteria)
if (divgOrNotCrit) {
if (NOT criteria) lastSolution = prevVo’
else lastSolution = nvo
if (firstSolution == ZER0O) firstSolution = lastSolution
if (NOT criteria OR nDetKin <= O OR nDetKin >= 2) break
}
}
if (firstSolution == ZERO) {
trkSolution = vo’
} else if (divgOrNotCrit AND nDetKin <= 0) {
trkSolution = lastSolution
} else {
trkSolution = firstSolution
}
hasTrk = (NOT (trkSolution = ZERO) AND criteriaFverSatisfied)
return (hasTrk,trkSolution.trk())
}

The repulsive criteria is usually satisfied in one direction up to a particular track
value. This algorithm seeks to find the maximally repulsive track, but will stop

19

earlier if divergence is reached. There are some cases where there are no repulsive
tracks available in the search direction. Therefore a flag criteriaEverSatisfied
informs hasTrk. If the non-criteria region is reached, there is no need to search
further. When in the divergent region and the solution is free of all secondary
conflicts, the search is stopped. Finally, if a secondary LoS occurs while searching,
then the search is abandoned at that point. It is not clear whether it is better
to return no track solution at this point, or just accept that a second LoS must
occur and defer its resolution until later. The algorithm above does the latter.
In the instantaneous (i.e., non-kinematic) version, the value of sAtTm is set to s
and remains constant throughout the for loop. The tests at the end cover several
different cases. The first branch covers the case where the criteria is satisfied all
the way through the loop and divergence is not reached. In this case the maximal
search value is used. The second branch covers the case where divergence or not
criteria was reached, and so lastSolution is used. The last branch occurs when
a LoS occurs or no solution free of secondary conflicts is found (nDetKin > 0). In
this case the firstSolution value is used.

The parameter minRelHoriz impacts the timeliness of the speed of exit from
loss of separation. If this parameter is set to 0, then the algorithm merely seeks to
achieve some positive relative speed. But if a larger value is specified, the algorithm
seeks to achieve a higher relative exiting speed. This is likely to result in a larger
maneuver.

7.4 Ground Speed LoS Algorithm

The following parameters are used by the ground speed LoS algorithm

so initial ownship position

vo initial ownship velocity

si initial traffic position

vi initial traffic velocity

mu the index of the aircraft to be resolved against, usually

the most urgent aircraft

kinematic flag which determines whether a kinematic or an in-
stantaneous solution is desired

step step size for search

The following pseudo code describes the iterative ground speed algorithm:

gsLoS(so,si,vo,vi,kinematic,step) : (boolean,double) {
boolean divgOrNotCrit = FALSE
boolean minSepOk = TRUE

0

ZERO

int nDetKin
Vect3 sAtTm
Vect3 vo’ = vo

Vect3 prevVo’ = ZERO

Vect3 firstSolution = ZERO
Vect3 lastSolution = ZERO

20

boolean criteriaEverSatisfied = FALSE
for (gsDelta = step; TRUE; gsDelta = gsDelta + step) {
nvoGs = vo.gs() + gsDir * gsDelta
if ((nvoGs > maxGs) OR (nvoGs < minGs)) break
tm = 0.0
Vect3 soAtTm so
Vect3 siAtTm = si
if (kinematic) {
tm = gsDelta / gsAccel
soAtTm = gsAccel(so,vo,tm,gsDir * gsAccel)
siAtTm = si.linear(vi,tm)

}

sAtTm = soAtTm.Sub(siAtTm)
prevVo’ = vo’

vo’ = vo.mkGs(nvoGs)

distBetw = sAtTm.vect2().norm()
if (distBetw < minSep) minSep = distBetw
boolean divg = divergentHorizGt (sAtTm,vo’,vi)
boolean criteria = criteria(sAtTm,prevNvo,vi,vo’,...)
if (criteria) criteriaEverSatisfied = TRUE
if (minSep <= gsLosDiscard)) break
divgOrNotCrit = (divg OR NOT criteria)
if (divgOrNotCrit) { // save first solution
if (NOT criteria) lastSolution = prevVo’
else lastSolution = vo’
if (firstSolution == ZER0) firstSolution = lastSolution
}
}
if (checkSecondary) {
nDetKin = nDetectorLoSFut(soAtTm,vo’,t0wn,tm,mu)
}
if (divgOrNotCrit) A{
if (NOT criteria OR nDetKin <= O OR nDetKin >= 2) break
}
}
if (firstSolution == ZER0) {
gsSolution = prevVo’
} else if (divgOrNotCrit AND nDetKin <= 0) {
gsSolution = lastSolution
} else {
gsSolution = firstSolution
}
boolean divg0 = divergentHorizGt (sAtTm,vo’,vi)
double distAtTau = distAtTau(sAtTm,vo’,vi,TRUE)
if (NOT divgO AND distAtTau <= ChorusConfig.gsLosDiscard) {

21

hasGs = FALSE
} else {
hasGs = (NOT gsSolution.equals(ZERO) AND criteriaEverSatisfied)
}
gsOnly = gsSolution.gs()
return (hasGs,gsOnly)
}

In the instantaneous (i.e., non-kinematic) version, the value of sAtTm is set to s and
remains constant throughout the for loop. The algorithm searches for a maximally
repulsive solution that satisfies the criteria. If divergence is reached, then the search
continues until a solution free of secondary conflicts is found (i.e. lastSolution).
If the additional search is unfruitful, then the algorithm reverts back to the first
solution that was divergent (i.e. firstSolution). An additional test is applied
that eliminates the ground speed solution when the projected distance at the closest
point of approach (tau) is smaller than the parameter gsLosDiscard. The search
is also short-circuited if a LoS occurs or the minimum separation becomes less than
gsLosDiscard. There are some cases where there are no repulsive ground speeds
available in the search direction. Therefore a flag criteriaEverSatisfied informs
hasGs. The case where the criteria is satisfied over the entire search range and
divergence is not reached must also be covered. In this case, firstSolution will
still be ZERO. We use the next-to-last value searched, i.e., prevVo’ as the solution,
because the last value may be outside of the (minGs,maxGs) range.

7.5 Vertical Speed LoS Algorithm

The vertical LoS solver uses an inner collision region, a cylinder defined by a radius,
caD, equal to 1000 ft and a half-height, caH, equal to 200 ft. The iterative search
varies the vertical speed until there is no longer a conflict with this inner collision
region and the relative exit speed is sufficiently large. The following parameters are
used by the ground speed LoS algorithm

so initial ownship position

Vo initial ownship velocity

si initial traffic position

vi initial traffic velocity

mu index of the aircraft to be resolved against, usually

the most urgent aircraft

kinematic flag which determines whether a kinematic or an in-
stantaneous solution is desired

step step size for search

epsv The vertical epsilon value calculated by the criteria

The vertical LoS algorithm is defined as follows:

vsLoS(so,si,vo,vi,kinematic,step,epsv) : (boolean,double) {
boolean solFound = FALSE

22

boolean innerConf = FALSE
vsSolution = ZERO
int nDetKin = 0
Vect3 firstSoln = ZERO
for (vsDelta = step/2; TRUE; vsDelta = vsDelta + step) {
double nvoVs = vo.vs() + dir * vsDelta
if ((nvoVs > maxVs) OR (nvoVs < minVs)) break
double tm = 0.0
Vect3 soAtTm so
Vect3d siAtTm = si
if (kinematic) {
tm = |nvoVs-voVs| / vsAccel
soAtTm = vsAccel(so ,vo,tm,dir * vsAccel)

siAtTm = si.linear(vi,tm)

}
Vect3 sAtTm = soAtTm - siAtTm
vo’ = vo.mkVs(nvoVs)

double algInnerFactor = 2.0
boolean innerLos = CD3D.loss0fSep(soAtTm,siAtTm,caD,
algInnerFactor * caH)
if (innerLos) break
innerConf = CD3D.cd3d(sAtTm,vo’,vi,caD,algInnerFactor*caH)
solFound = (epsv*(nvoVs - vi.z) >= minRelVs AND NOT innerConf)
if (checkSecondary) {
nDetKin = nDetectorFut(soAtTm,vo’,tm,mu)
if (nDetKin == 2) {
solFound = FALSE
break
}
}
if (solFound AND firstSoln == ZERO) firstSoln = vo’
solFound = (solFound AND nDetKin <= 0)
if (solFound) break
}
if (solFound) { // solution free of secondary conflicts found
vsSolution = vo’
hasVs = TRUE
} else {
if (firstSoln != ZERO) {
vsSolution = firstSoln
hasVs = TRUE
} else {
hasVs = FALSE

23

return (hasVs,vsSolution.vs())

}

As noted earlier, in the instantaneous (i.e., non-kinematic) version, the value of
sAtTm is set to s and remains constant throughout the for loop. The algorithm
searches in the repulsive direction until there is no conflict with the inner collision
region and the relative exit speed is sufficiently large. The vertical LoS criteria is
simpler in that it is satisfied for all vertical speeds in the appropriate direction so
a specific test is not needed (i.e. it is implicitly satisfied). The search continues
beyond this point if there are secondary conflicts in hope of reaching a solution
free of secondary conflicts. If the additional search is unfruitful, then the algo-
rithm reverts to the first solution that was found (i.e. firstSoln). The search
is also short-circuited if a loss of separation occurs. The criteria variable epsv is
used in the test epsvx(nvoVs - vi.z) >= minRelVs as a fast absolute value (i.e.
|nvoVs - vi.z| >= minRelVs).

8 Summary

Nine Chorus resolution algorithms have been defined that provide instantaneous
and kinematic resolutions for both conflict and loss of separation situations. These
algorithms have been documented using a pseudocode that clarifies the essential
features of the algorithms. The rationale and key design decisions used in these
algorithms are highlighted and discussed.

References

1. Ricky Butler and César Munoz. A formal framework for the analysis of algo-
rithms that recover from loss of separation. Technical Memorandum NASA /TM-
2008-215356, NASA, Langley Research Center, Hampton VA 23681-2199, USA,
October 2008.

2. Ricky Butler and César Munioz. Formally verified practical algorithms for recov-
ery from loss of separation. Technical Memorandum NASA /TM-2009-215726,
NASA, Langley Research Center, Hampton VA 23681-2199, USA, June 2009.

3. Maria Consiglio, James Chamberlain, César Munoz, and Keith Hoffler. Concept
of integration for UAS operations in the NAS. In Proceedings of 28th Interna-
tional Congress of the Aeronautical Sciences, ICAS 2012, Brisbane, Australia,
2012.

4. James Kuchar and Lee Yang. A review of conflict detection and resolution
modeling methods. IEEE Transactions on Intelligent Transportation Systems,
1(4):179-189, December 2000.

5. Jeffrey Maddalon, Ricky Butler, Alfons Geser, and César Munoz. Formal
verification of a conflict resolution and recovery algorithm. Technical Paper
NASA/TP-2004-213015, NASA, April 2004.

24

10.

11.

. César Munoz, Ricky Butler, Anthony Narkawicz, Jeffrey Maddalon, and George

Hagen. A criteria standard for conflict resolution: A vision for guaranteeing
the safety of self-separation in NextGen. Technical Memorandum NASA /TM-
2010-216862, NASA, Langley Research Center, Hampton VA 23681-2199, USA,
October 2010.

César Munoz and Anthony Narkawicz. Time of closest approach in three-
dimensional airspace. Technical Memorandum NASA /TM-2010-216857, NASA,
Langley Research Center, Hampton VA 23681-2199, USA, October 2010.

. Anthony Narkawicz and César Munoz. State-based implicit coordination and

applications. Technical Publication NASA/TP-2011-217067, NASA, Langley
Research Center, Hampton VA 23681-2199, USA, March 2011.

. N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer Science Lab-

oratory, SRI International, Menlo Park, CA, February 1993. Also appears in
Tutorial Notes, Formal Methods Furope ’93: Industrial-Strength Formal Meth-
ods, pages 357-406, Odense, Denmark, April 1993.

David Wing, Thomas Prevot, Timothy Lewis, Lynne Martin, Sally Johnson,
Christopher Cabrall, Sean Commo, Jeffrey Homola, Manasi Sheth-Chandra,
Joey Mercer, and Susan Morey. Pilot and controller evaluations of sepa-
ration function allocation in air traffic management. In Proceedings of the
Tenth USA/FEurope Air Traffic Management Research and Development Semi-
nar (ATM2013), June 2013.

David J. Wing and William Cotton. Autonomous flight rules: A concept for self-
separation in U.S. domestic airspace. Technical Report NASA /TP-2011-217174,
NASA Langley Research Center, 2011.

25

(Sox Soy

Figure Al. Kinematic Trajectory for Turns
Appendix A

Kinematic Trajectory Generation

We formulate trajectory generation for turns as the computation of the future
position and velocity of the aircraft, s(¢) and v(t), given a constant turn rate (angular
velocity), w, and a time ¢. The initial position of the aircraft is s, = (Soz, Soy) and
the initial velocity vector is v, = (Voz,Voy). We let v be the speed of the aircraft,
which equals |v,|, and 6 is the track angle of the initial velocity vector. In aircraft
navigation, track angles and headings are measured from true north in the clockwise
direction, thus 6 = atan(ves, vey). Using these definitions, the initial velocity is

Vor = U SIN G (A1)

Voy = v cos 6

By assumption, the aircraft’s new target velocity vector will be achieved by a
constant angular velocity w (i.e. w = %). This will result in time based velocity

vector of v(t) = (vz(t), vy(t)), where

v, (t) = vsin(0 + wt)

A2
vy (t) = vcos(f + wt) (42)
These relationships are shown in figure Al.
Integrating, we obtain the trajectory of positions:
v ;v
$z(t) — 84(0) = ——cos(0 4+ wt) | = —[cos @ — cos(f + wt)]
w w (AS)
sy(t) — 54(0) = v sin(f 4 wt) |5 = —E[sine — sin(6 + wt)]
w w

26

Collecting terms yields:

s0(t) = 82(0) + ~[cos§ — cos(+ wt)]
- (A4)
sy(t) = 54(0) — ;[sinﬁ —sin(0 + wt)]

This is directly coded into the function turnOmega which takes the following pa-
rameters:

Vect3 sO starting position

Vect3 vO initial velocity

t time of turn

omega rate of change of track, sign indicates direction

The turnOmega function is defined:

turnOmega(s0,v0,t,omega) : (Vect3, Vect3) {
if (omega "= 0) return (sO + vO * t,v0)
v = v0.gs0)
theta = v0.trk()
xT = s0.x + (v/omega) * (cos(theta) - cos(omegaxt+theta))
yT = s0.y - (v/omega) * (sin(theta) - sin(omega*t+theta))
zT = s80.z + vO0.zxt
s’ = (xT,yT,zT)
v’ = v0.mkTrk(vO.track() + omega * t)
return (s’,v’)

}

Note, the symbol ““=" should be read as “almost equals,” which means that the
values are compared and if they are within a fixed floating point precision of each
other, then they are considered to be equal.

Instead of a turn rate, w, turns are often specified with a bank angle. Thus, a
means is needed to compute w from a bank angle, usually represented as ¢. First,
consider the equation for the turn radius of aircraft turning in level flight with bank
angle ¢:

,02

g tan¢
where R is the turn radius, and g is gravitational acceleration. This formula relies
on the assumption that the wing provides most of the lift force. For high bank
angles, ¢ > 45, where the body of the aircraft starts to provide lift, this equation
is no longer valid. Continuing the development of an equation for w, we use the
relationship v = |w|R to obtain

(A5)

g tan ¢ (A6)

This equation is captured in the function turnRate.

27

turnRate (speed,bankAngle) : double {
if (bankAngle "= 0.0) return 0.0
return g * tan(bankAngle) / speed

}

The function turnTime computes the time it takes to complete a turn given a
ground speed, the magnitude of the track change and the maximum bank angle:

turnTime (groundSpeed,deltaTrack,bankAngle) : double {
omega = turnRate(groundSpeed,bankAngle)
if (omega == 0.0) return MAXDOUBLE
return |deltaTrack / omegal

The functions gsAccel and vsAccel are used to compute the trajectory for
a constant ground speed acceleration and a constant vertical speed acceleration,
respectively.

gsAccel(so3,vo3,t,a) : (Vect3, Vect3d) {
Vect2 so = so3.vect2()
Vect2 vo = vo3.vect2()
Vect2 sK = so.Add(vo.Hat().Scal(vo.norm() * t + 0.5 * a * t * t))
double nz = s03.z + vo3.z * t
Vect3 nso = new Vect3(sK,nz)
double nvoGs = vo3.gs() + a * t
Vect3 nvo = vo3.mkGs (nvoGs)
return (nso,nvo)

}

vsAccel(so3,vo3,t,a) : (Vect3, Vect3) {
nvoVs = vo3.vs() + a *x t
Vect3 nvo = vo3.mkVs(nvoVs)
Vect3 nso (s03.x + t * vo3.x,
so3.y + t * vo3.y,
803.z + vo3.z * t + 0.5 ¥ a * t x t)
return (nso,nvo)

}

28

Appendix B

The CDSS Conflict Probe

The CDSS.conflict function takes the following parameters:

s the relative position of the aircraft

vo the ownship’s velocity

vi the intruder’s velocity

the minimum horizontal distance

the minimum vertical distance

B the the lower bound of the lookahead time (the value
0 is is implicitly passed in the pseudocode calls)

T the upper bound of the lookahead time (7" < 0 means
infinite lookahead time)

==

It is defined as follows:

conflict(s,vo,vi,D,H,B,T) : boolean {
if (T >= 0 AND B >= T) return FALSE
Vect2 s2 s.vect2()
Vect2 vo2 = vo.vect2()
Vect2 vi2 = vi.vect2()
if (vo.z "= vi.z) AND [s.z| < H) {
return CD2D.cd2d(s.vect2(),vo2,vi2,D,B,T)
}
vz = vo.z - Vvi.z
ml = max(-H - sign(vz) * s.z,B * |vz])

if (T <0) {

m2 = H - sign(vz) * s.z
} else {

m2 = min(H - sign(vz) * s.z, T * |vz]|)
}

if (NOT (vo.z "= vi.z) AND ml1 < m2) {
return CD2D.cd2d(lvzl|s2,vo2,vi2,D * |vz|,ml,m2)
} else {
return FALSE
}
}

where cd2d is defined as follows

cd2d(s,vo,vi,D,B,T) : boolean {
if (T < 0) {
v = vo - Vi
return almost_horizontal_los(s,D) OR Delta(s,v,D) > O AND s * v < O

29

}
if (B >= T) return FALSE

v = vo - Vvi
return almost_horizontal_los(s+Bv,D) OR omega_vv(s,v,D,B,T) < O

and almost_horizontal_los(s,D) is defined as

almost_horizontal_los(s,D) : boolean {
return NOT (s*s "= D * D) AND s * s <D *x D
}

and omega_vv(s,v,D,B,T) is defined as follows:

omega_vv(s,v,D,B,T) : double {
if (sxs "= D * D) AND B ~= 0) {
return s*v
} else {
tau = min(max(B * v * v,-(s * v)),T * v * v)

}

return vkvxs*s + (2xtau)*(s*v) + tauxtau - D*xDxvx*v

}
and Delta(s,v,D) and det(s,v) are defined as

Delta(s,v,D) : double {
return D * D * V x V - det(s,v) * det(s,v)
}

det(s,v) : double {
return s.x * v.y — 8.y ¥ V.X

}

In the above functions, the notation ~= is used for approximately equal: equal within
a specified floating point precision.

30

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
01-08-2013 Technical Memorandum
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Chorus Conflict and Loss of Separation Resolution Algorithms

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Ricky W. Butler, George Hagen, Jeffrey M. Maddalon

5e. TASK NUMBER

5f. WORK UNIT NUMBER
411931.02.02.07.13.01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, Virginia 23681-2199 L-00000
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
National Aeronautics and Space Administration NASA
Washington, DC 20546-0001
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
NASA/TM-2013-218030

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited

Subject Category 63

Availability: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

The Chorus software is designed to investigate near-term, tactical conflict and loss of separation detection and resolution concepts for air traffic
management. This software is currently being used in two different problem domains: en-route self-separation and sense and avoid for
unmanned aircraft systems. This paper describes the core resolution algorithms that are part of Chorus. The combination of several features of
the Chorus program distinguishes this software from other approaches to conflict and loss of separation resolution. First, the program stores a
history of state information over time which enables it to handle communication dropouts and take advantage of previous input data. Second, the
underlying conflict algorithms find resolutions that solve the most urgent conflict, but also seek to prevent secondary conflicts with the other
aircraft. Third, if the program is run on multiple aircraft, and the two aircraft maneuver at the same time, the result will be implicitly coordinated.
This implicit coordination property is established by ensuring that a resolution produced by Chorus will comply with a mathematically-defined
criteria whose correctness has been formally verified. Fourth, the program produces both instantaneous solutions and kinematic solutions,
which are based on simple acceleration models. Finally, the program provides resolutions for recovery from loss of separation. Different versions
of this software are implemented as Java and C++ software programs, respectively.

15. SUBJECT TERMS

air traffic, conflict, detection, resolution, avoidance, prevention, bands, verification, secondary conflict, track, angle, ground,
vertical, speed

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT |c. THIS PAGE ABSTRACT g:GES STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

Uu
U U v 0 (443) 757-5802

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

